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The objective of the paper is to formulate a physically realistic definition of 
shock impedance. The definition obtained, expression (15), is consistent with the 
acoustic limit, with the Polachek & Seeger result for head-on shock incidence, and 
with the various reflexion limits. It seems to  be applicable to all known regular 
and irregular refractions, with the possible exception of a refraction containing a 
Guderley patch. It is shown that one result of increasing impedance mismatch is 
to produce precursor and postcursor waves. It is thought the impedance mis- 
match caused by the jets of supersonic aircraft might be used to reduce the sonic 
boom overpressure. 

~ ~ ~~ 

Introduction 
The conventional definition of the acoustic impedance, x ,  of a gaseous medium, 

is the product of the density, p, and speed of sound, a, in the undisturbed medium: 

x =pa. (1) 

This quantity is of fundamental importance in the theory of sound refraction, 
and in fact refraction results whenever a propagating wave encounters a change 
in x .  The classical problem in the theory of sound refraction considers two media 
of different z which meet along a plane boundary (interface). Then a plane wave 
i which starts in the first medium strikes the interface at some incidence angle pi. 
The angular direction of the wave is changed from pi to pt as it passes into the 
second medium. The relation between is given by Snell’s law 

at - a, 
sinpi sinput’ 

Evidently, ( 2 )  implies, inter alia, that the absolute velocities of i ,  t, along the inter- 
face have the same values, vi = vt. (3) 

Now the boundary conditions require continuity in pressure, and particle dis- 
placement, normal to the interface. It can be shown that in order to satisfy these 
conditions, a reflected wave r must be propagated back into the first medium. 
The theory gives expressions for the transmission and reflexion coefficients 
which make it possible to compare the pressure changes across t ,  and T ,  with 
those across i. In  this way it can be shown that r will be in phase, or out of phase, 
according as 

~ - _ _ _  Pi% < ptat 
cospc, cospu,’ (4) 



720 L. P. Henderson 

At the equality condition the wave r is vanishingly weak. Expressions of the form 
appearing in this relation are sometimes called the ‘effective impedance ’ (Morse 
& Ingard 1968), and they provide a more natural definition of zi,t for oblique 
refraction. Accordingly, the acoustic impedance will be defined, from here on, by 

m m r n  m 

+ i  

I 

Inhomogeneous A 
FIGURE 1. Effect of incidence angle pi on acoustic wave refraction: (a) pi = 0, head-on 
colIision; ( b )  pi > 0, oblique refraction; (c) pt = 971, total internal reflexion. i, incident 
wave; r ,  reflected wave; t ,  transmitted wave; m-m, gas interface. 

An important parameter in the theory is pi and a systematic study of its effect 
can be made in the following way. Suppose initially that pg = 0, which means 
that i m.akes a head-on collision with the interface, figure 1 (a) ,  then the waves t 
andr will also have zero wave angles ,ut = p, = 0. This type of refraction can either 
be regarded as being unsteady or as the limit of a steady system in which the 
waves propagate with infinite velocity parallel to the interface. The latter view 
is taken here. Next suppose that pi is continuously increased to some positive 
value, then the classical confluence of three waves will be obtained, figure 1 ( b ) .  
If the increase in pi is continued steadily, one eventually attains a condition 
where the theory gives an unreal solution. The amplitudes of i and r are then equal 
and one has the familiar total internal reflexion phenomenon. The wave t, 
although plane, is inhomogeneous, and it decays in amplitude as it retreats 
from the interface, figure 1 ( c ) .  The real solutions correspond to wave systems 
containing only homogeneous waves, and these will be defined as regular refrac- 
tions of i. The unreal solutions require at least one wave to be inhomogeneous, 
and will be defined as irregular refractions of i. 

Of course it does not always follow that a change in the composition of the 
gas causes a change in z. But if special conditions exist in which x remains invari- 
ant with changing gas composition, then all the reflected waves must cancel 
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mutually. For example, if a layer of gas of different composition is embedded in 
another gas, and if x is to be invariant, then following the double refraction, the 
two reflected waves must cancel to a wave of zero strength. Such transparencies 
are often of practical importance. 

The above remarks have their counterpart in the refraction of shock waves, 
and in particular the concept of acoustic impedance has to be replaced by that 
of shock impedance. So far, a satisfactory definition of this quantity does not 
seem to be available, although Polachek & Seeger (1951) have successfully de- 
fined it for the limiting case of zero incidence wi = 0. Their analogue of (4) can 
be written 

so that their definition of shock impedance, 2, is 

W i , t  = 0. I 
At the acoustic limit wherei amp t -+ amp i --f 1, expression (6) reduces to expres- 
sion (4), as it should. The reflected wave will be a shock when Zi < 2, and an 
expansion when 2, > 2,. The reflected wave degenerates to a Mach line at the 
equality condition. 

The objective of the present paper is to formulate the appropriate definition 
of shock impedance when refraction takes place at  an arbitrary angle of incidence. 
In  considering what properties a physically satisfactory definition should have, 
one naturally requires that it should reduce to expression ( 5 )  at the acoustic 
limit and to expression (7) at zero wave incidence. Another limiting property 
which seems essential is that it should be consistent with reflexion phenomena. 
Thus, for example, if the rigidity of the second medium were to increase without 
limit, then this should correspond to the medium having infinite impedance, 
and to the reflected wave becoming a shock. On the other hand circumstances 
can exist where i can refract, without causing t to appear. A well-known example 
is in the refraction of a shock at the edge of a free jet which is diffusing into an 
initially still atmosphere. In this situation the impedance of the second medium 
should be unreal, and the reflected wave should become an expansion. These 
considerations suggest that it is the nature of the reflected wave which should 
determine if the impedance increases or decreases during refraction. Accordingly, 
we make the following fundamental assumption. The shock impedance increases 
during refraction i f  the rejlected wave is a shock, it decreases if the rejected wave is an 
expansion, but it remains unchanged if the rejlected wave is a Mach line. The initial 
conditions for the various wave phenomena can be determined with the help 
of the hodograph mapping technique (Henderson 1966) and the same technique 
will be used here to frame a consistent definition of shock impedance. 

amp i E Pli/Po. 
t The amplitude of a shock wave is defined to be its pressure ratio, for example, 

46 F L M  40 
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Shock impedance for regular refraction 
For regular refraction, as defined elsewhere (Polachek & Seeger 1951; Jahn 

1956; Henderson 1966), all the waves in the system are locally straight and homo- 
geneous in the neighbourhood of therefraction point. Analysisof the wave system 
makes use of three boundary conditions. First, if a stationary wave system is to 
exist, then all points on it must move with the same absolute velocity. 

I 

FIGURE 2 .  Regular refraction at  a gas interface. Sequence of events showing how a reflected 
wave changes from an expansion e to a shock T. Shock wave angle w, streamline deflexion 
angle 8, ordered set of solutions t o  three wave confluence (el. a,, a&. 

Hence in particular, along the undisturbed interface, one can write, figure 2 (a), 

vi = v,, (8) 

Vni  - v*t which implies that 
sinwt sinw,’ (9) 
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This of course is the analogue of Snell's law, but the law is now relaxed to the ex- 
tent that the angle of reflexion is no longer equal to the angle of incidence. The 
other boundary conditions follow from the assumptions that the pressure and 
particle displacements are continuous across the deflected interface. These are 
conveniently written as 

and 8, = 8% + 8,. ( 1 1 )  
These boundary conditions, together with the shock wave equations and Prandtl- 
Meyer equation, provide a complete description of the regular refraction systems. 
The equations do, however, give more than one physically acceptable solution. 
But it has been found (Henderson 1966) that if all rigid boundaries are at  infinity, 
then it is the weakest member of the ordered set of solutions that is physically 
relevant. 

We now proceed to construct a sequence of events in regular refraction pheno- 
mena, during which the reflected wave changes from an expansion, to a shock, 
or vice versa. The example chosen for discussion occurs at a gas interface, and is of 
the slow-fast, ai < a,, variety.? This is quite a general problem and it includes a 
number of other problems as particular cases. In  figure 2,  the sequence is construc- 
ted for a wave i ,  incident at  some angle wi. The maps change as the amplitude of i 
is continuously increased. From the hodograph diagrams it may be concluded 
that the reflected wave will be a shock, a Mach line, or an expansion, depending 
respectively on whether 

where Si, , are the streamline deflexions across the incident and transmitted shocks. 
Hence by our basic assumption, this relation will determine if there is an increase, 
an equality, or a decrease in shock impedance. Now the equations of the shock 

cot si $ cot st, (12)  

hodographs (polars) are 
Pli, I t  Yi,t-l I Pli,lt 

yi,t+1 P0,O cot 8, + = r, 

"L'ub Yi,t+ 1 p 0 , o  _I 
These equations can be substituted into (12 ) ,  with the eventual result:$ 

t The fast-slow sequence is constructed with equal facility, and the results obtained 
are found to be consistent with what follows. 

1 Expression (14) has been simplified by using (10). Then the two inequalities, and the 
equality remain valid if the left-hand side of (14) is multiplied by [(P,,/P$ - 11, and the 
right-hand side by [(Plt/P,,) - 11. 

46-2 
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This last expression is more useful than (12), because it contains a property 
yi,t of each gas, and also the amplitudes of i and t. 

The quantities appearing in this expression will be defined as the shock im- 
pedance of the media, thus 

The shock impedance of a gas is thus dependent on the amplitude of the wave in 
it. Now it will be recalled that the equations that describe a regular refraction 
give more than one physically acceptable solution. The ordered set of solutions 
will therefore require the second medium to have a different shock impedance 
for each member of the set. In  principle therefore it is possible to increase the im- 
pedance by placing suitable boundaries in the$ow so as to force a stronger solution to 
appear. 

At the equality condition one has that Pli/Po = Plt/Po, and expression (14) 
becomes a cubic in the wave amplitude. The algebraic complexity prevents us 
from giving the roots in a closed form. Some special cases have been worked out 
elsewhere; for example, the equality condition a t  a Mach number interface 
(Henderson & Macpherson 1968). The equality is the analogue of the transparency 
condition in acoustic refraction. The wave angle will in general change, even 
though the amplitude is constant. 

The acoustic limit 
At the acoustic limit, amp i -+ 1, and by (15) 

or because sin,ui,t = M,ilot and a:,t = yi,tPo,o/pi,L, then 

On substituting this into (14) and making use of (S), one obtains 2%; zt, so that 
(14) and (15) are consistent with the acoustic limit. 

The zero incidence limit, wi = 0 
This is the special case when i makes a head-on collision with the interface. 

As mentioned previously it can be considered to be the limiting condition where 
No,,ot + co. Then with amp i, t finite, expression (15) becomes 

Wi,t + 0. I 
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On substituting these expressions into (14), and making use of (8) and (lo), 
one immediately obtains the Polachek & Seeger result, expression ( 6 ) .  

The rigidity of the medium, B 
Evidently, the refraction phenomena change into reflexion phenomena as the 

rigidity of the second medium becomes either 0, or co. We now make the further 
assumption that the bulk modulus B is the appropriate measure of the rigidity of 
a gas. This is defined in general terms by B = stress/strain, or for a gas 

Clearly this quantity depends on the nature of the process which changes the 
state of the gas, thus for an isentropic wave 

and this expression can be regarded as defining the acoustic bulk modulus. 
However, for a shock wave, the isentropic equation P Vr = K ,  must be replaced 
by the Rankine-Hugoniot equation. This can be expressed in parametric form in 
terms of the Mach number component N ,  normal to the shock, thus 

On substituting these equations into (19), one obtains the following expressions 
for the shock bulk modulus 

Bi,t Yi,tP,,oM%,nt = Pi,tvL,nt. (22) 

It is worth noting that for a particular gas M i  = (shock bulk modulus)/ 
(acoustic bulk modulus). Hence the shock bulk modulus, just like the shock 
impedance, is dependent on the amplitude of the shock present in the gas. 

The complaint limit, 2, -+ B,-+O, Mot -+ 0, and bound precursor waves 
Suppose that B, -+ 0; this may happen in several ways, but for simplicity atten- 

tion here is confined to the ease where No, -+ 0. The shock t degenerates to a sonic 
Mach line when Mot = 1 and disappears altogether when Mot < 1. It is easily 
confirmed from (15) that 

Zt+ 00, as Mot -+ 1, 

2, is unreal, 

2, -+ 0, as Mot -+ 0. 

when 0 < Not < 1, 

The physical consequences of these changes need some comment. Thus consider 
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the sequence of events illustrated in figure 3. The first pair of maps show a typical 
slow-fast irregular refraction, containing a Mach stem n. In  this case there are 
two shocks refracted, namely j and Ic ,  and their respective refraction points are 

In  an earlier paper (Henderson 1966) it was shown that a necessary condition 
for the appearance of irregular refractions of the types illustrated in figure 3 (a) 

F2,1' 

m 

FIGURE 3. Refraction at  a gas interface. Sequence of events 
leading to the compliant limit; Z,,  €3, --f 0. 
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(b) ,  was that one or both of the boundary conditions (lo), (1  1) should be violated 
or more specifically that (Pli/P0) (P2JPli) > (Plt/Po), and Sj + 8, > 8,. As a result, 
t behaved as though it were a detached shock moving ahead of a blunt body. 
In  the present context B, --f 0, and Mot + 1, and therefore 2, + 00. Then as 
transonic theory makes plain, t will move further and further ahead of F, until 
at Mot = 1 the shockdetachments, or stand-off, distance will be infinite. NOW the 
wavesj, rl of figure 3 (b) are due to t propagatingfrom the secondmedium backinto 
the first (feedback), so these waves must also move ahead with t. The totality 
of t , j ,  rl, will be called theprecursor wave of the refraction. If a t  some stage during 
this development Z,, B, are held constant for a time, then the precursor will of 
course take up a fixed position (the stand-off distance) ahead of F,. Thus the 
precursor is stationary relative to i, k,  e and for this reason it will be called a 
stationary, or bound precursor. 

As Mot + 1, St -+ 0, ampj 3 1, and the polar for t shrinks steadily. These changes 
cause both Moi and M,, to increase,? and eventually result in polars I11 and I V  
intersecting. It is this intersection which signals the change from the Mach 
reflexion system, figure 3 (a) ,  to the four-wave confluence system, figure 3 (b ) .  
The next event of interest is the transitional condition, figure 3(c) ,  where 
Mot = 1, P,, = Po and the precursor is at  an infinite stand-off distance. The 
polar €or t has shrunk into the point D, and all the waves in the precursor have 
become Mach lines. For the second medium the shock bulk modulus is now equal 
to the acoustic bulk modulus, while 2, = 00, and because of this SFl = 0. Another 
property of the condition is that the waves i ,  k have become part of the same shock 
which is simply relabelled i. The hodograph diagram indicates that there are 
three solutions that can satisfy the boundary condition SFl = 0, and these com- 
prise the ordered set (el, a,, a2). Now the el solution requires the expansion fan to 
be inclined forward of F,, so this solution is rejected as being physically un- 
realistic. The al, solutions are associated with a substantial pressure increase 
across the waves i, rl, but this cannot be matched by the sonic Mach line whose 
amplitude is only unity. Hence the boundary condition cannot be satisfied for 
the solutions either. There is, however, one rather artificial way in which the 
a,, solutions could be made physically acceptable. Thus suppose a rigid wall is 
placed along the interface and downstream of F,, figure 3 (G), the wall is then able 
t o  support the higher downstream pressure associated with and at the same 
time it ensures that SFl = 0. One would now expect to see the a, solution appear 
but it should also be possible to force a2 to replace a,, by placing another wall in 
the downsteam flow. This would need to be positioned so as to sustain the extra 
pressure associated with a2. For example, it might be placed so as to create a 
second throat. However in the absence of these artificial aids, none of the soh- 
tions which satisfy SH; = 0 are physically acceptable. The SFl = 0 condition 
must therefore be invalid, and the constant pressure condition P,, = Po, imposes 
the requirement that the reflected wave is an expansion. One may now construct 
the e2 solution shown in figure 3(c). This solution remains valid as Hot -+ 0, 
and it is the familiar flow from an over-expanded jet, figure 3 (d) .  

t By equation (25), M,, increases because 8, --+ 0, and M I ,  increases because amp j -+ 1. 
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The singular behaviour a t  Mot = 1 is plainly associated with the fact that B, 
is finite while 2, is infinite. It is this compliance of the second medium that 
enables one to either abandon the aFl = 0 condition, or else to retain it by making 
the medium artificially rigid with a suitably placed wall. 

The rigid limit Z,, B, -+ 00 

Suppose that one again starts with the maps shown in figure 3(a) ,  ( 6 )  and 
it is desired to find out what happens as the speed of a wave of any amplitude in 
the second medium increases without limit, a, -+ 00, vt + 00. Then both B, and 2, 
will also increase without limit. If (8) is to remain valid during this process, then 
it will be necessary for the increase in vt to be matched by an increase in vi. The 
maps show that the wave system adjusts itself to meet the situation in the follow- 
ing way. First, it is noted that the streamlines which approach i are presented 
to the wave as though they are parallel? to FlF2, figure 4(a). Thus (8) can be 
extended to 

V n i  

where 6, is measured at F,, and wi is measured from Fl Fz. With increasing rigidity, 
a given stress will cause less and less strain in the second medium, hence 6, + 0, 
and wi will become smaller. By (23), these changes will allow vi to become larger, 
so that for a time, (8) can remain valid. 

At Fl the effect of the increasing rigidity is to  cause the reflected wave to change 
from an expansion to a shock, because here also JF1 + 0. The result is an a1,2 
solution in which the pressure change across the wave system in the first medium 
can now be supported by the increasing rigidity of the second medium. This 
leads to a shock reflexion of classical form, which may be either simple, or Mach, 
depending on the initial conditions, figure 4 (6). 

As the limit 8, = 0, and wta, = = co, the Mach number Mot will be restricted 
to being either 1 or co. The two values of Mot are now considered in turn. 

(23) vi = v; cos 6 - 7 cos s, = vj = v,, 
- smwi 

Free-precursor waves Z,, B, -+ coy Mot -+ 1 
An inevitable consequence of B,, 2, increasing without limit, while the velocity 

of i remains finite, is that sooner or later the adjustments indicated by (23) 
will be insufficient to maintain the validity of (8)$ so that one will have: 

or 
or 

For example, even the speed of an acoustic wave in the second medium a, 
may become greater than the velocity of the incident shock along the interface. 

t For simplicity it is assumed here that F I P ,  is a straight segment. Experiments by 
Jahn (1956) seem to support this assumption. Detailed discussion of the structure of the 
interface in this region has been given by Henderson & Macpherson (1968). 

$ Only in the special case where oi = 0 can (8) remain valid to the limit. 
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One may now infer the important result that when the inequality (24) is satisfied. 
the precursor is no longer a stationary wave but is free to propagate at  a faster 
velocity along the interface, figure 4 ( b ) .  The wave will then be called a non- 
stationary or free precursor. The velocity of j, r1 along the interface are able to 
adjust to the increased velocity of t ,  by a reduction in wave angle, for example, 

v. = VUni = vt + at + 03. 

sinwi 

It follows that M ,  will be increased because vi has been increased while a( has 
been held constant. 

FICXTRE 
type of 
W #  < v,; 

0 6 

:y/! Bound prc-cursor 

-Free precursor 

El  

/ \ ..2 

4. Irregular refraction at a gas interface. Sequence of events leading to Mot = 1, 
rigid limit. (a) Bound precursor, M,, > 1, wui = v,; ( b )  free precursor, Mot 3 1, 
(c )  free precursor, Mot = 1, vt < wUt = 03. 

From (24) it is evident that free precursors can be obtained for finite a,, and 
therefore also for finite values of Z,, B,. This will mean in general that Mot > 1 
and amp t > 1 at the particular values of Z,, Bt at which the precursors become 
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free. For this situation, consider the initial shape oft, that is, soon after it has 
begun to move ahead of i. The hodograph diagram shows that t inclines forward 
of F, and then steepens to become a normal shock a t  B. At B one can write 
vt = v,, = vntB say. Beyond B the wave weakens and inclines backwards. 
Earlier papers (Henderson 1966 and Henderson & Macpherson 1968) indicate 
that the strong part oft, namely S ,  BX,, will be confined to a very small region at  
the interface, unless a suitable boundary? exists that would force SIBS,  to 
grow. Now with the passage of time the free precursors get further and further 
ahead of the stationary wave system until they have very little effect on it. Then 
at  a given point in either gas there is a sudden increase in pressure as the pre- 
cursors arrive. But the pressure falls as the waves move on, because the gases 
tend to return to their initial state. Expansion waves must therefore be present 
which decelerate the perturbed gases to zero velocity and to the undisturbed 
pressure. Additional expansion waves then accelerate the gases in the reverse 
direction as they tend to return to their original position. This means that a second 
precursor wave must exist, which once more restores the undisturbed pressure. 
One now has the familiar N wave, described by Whitham (1956). 

The condition for the onset of the free precursors can now be put in a different 
form, thus by (23), (24) and (25) 

At  the equality condition the precursors are bound to the stationary waves to 
form a typical refraction, for example, figure 4 (a) ,  but at  the inequality condition 
the precursors are set free and move ahead of the stationary waves. The refrac- 
tion then consists of a stationary wave system, which in fact is a reflexion of 
either simple or Mach type, and a non-stationary system$ which eventually 
develops into an N wave. 

Finally, at the limiting condition 2, = B, = v, = at = 00, and Mot = 1, the 
polar for t shrinks into the point D,, figure 4 (c). Hence all precursors will then be 
Mach lines, with wt = in-, and wi = wT1 = 0. The waves j,rl will therefore be 
coincident with the interface. 

The so-called phenomenon of sonic cut-off is an example of precursors forming 
by refraction in gases. For consider a supersonic vehicle cruising at  high altitude. 
Then under the action of increasing pressure and temperature, the impedance 
and the rigidity of the atmosphere increases from the aircraft to the ground. 
A condition can be reached, where the speed of sound near the ground is equal to 
the absolute speed of the aircraft. Below this relative sonic line, the boom signa- 
ture is propagated upstream as precursors, which travel faster than the vehicle. 
The signature is also propagated in the downstream direction by post-cursor 
waves. Free precursors may also appear during the approach to the compliant 
limit. An example of this is to be found in the interaction of an oblique shock wave 
with a boundary layer. The Mach number inside the boundary layer declinesfrom 

t Such a boundary could be a local region in the second medium that has an even grcater 
rigidity than the medium itself. It would also be necessary for it to have a suitable shape 
and posit,ion. 

$ The unsteady waves may be propagated in all directions in the second medium. 
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the free-stream value to zero at  the wall, and this causes the shock to be refracted 
as it penetrates the boundary layer. At the wall Mu, = Bt = 2, = 0, and one has 
the compliant limit. Any perturbation to the amplitude of the shock will produce 
both free- and post-cursor waves in the subsonic flow which exists below the 
boundary-layer sonic line. 

Z,, B, -+ 00, and Mot -+ 00 

It was mentioned above that an irregular refraction such as the one shown in 
figure 4 (a),  is formed by t moving ahead of Fl much as though it were a detached 
shock taking up a position ahead of a blunt body. One way of causing this is to 
decrease Hut, and in fact the stand-off distance increases very rapidly if Mu, + 1 
closely. Conversely, if Mot begins to increase, then twill move in the downstream 
direction, so F2 --f F,, and the irregular system will soonrevert to aregular system, 
figure 5(a) .  Another consequence of increasing Mot will be that its polar will 
shrink laterally and grow vertically,? until in the limit when Mot = co, the polar 
will be coincident with the ordinate axis, and St = 0. With these changes Zt and 
B, again increase without limit, and once more a solution of the type will 
appear. 

One way in which this refraction can be envisaged is to consider the first 
medium to be a t  rest with the shock i propagating through it. At the same time, 
the second medium is considered to be moving along the interface at  high velocity 
V ,  and coming from the direction of upstream infinity. Then while the second 
medium has some compliance, B, < 00, the waves i and r will cause it to be de- 
flected at F,, figure 5 ( b )  (much as though a wedge were introduced into the flow 
a t  F,), and this will cause the shock t to  appear. Consequently the equation$ 
vi = vt remains valid to the limit. At the limit Mot = B, = 00, and for any i, r 
of finite amplitude St = wt = 0, so that t will be coincident with the interface 
downstream of F,, figure 5 (c). 

Use of impedance mismatch to reduce the sonic boom overpressure 
One way that this might be done is to make use of the impedance and the 

rigidity of the propelling jets. It would be necessary to  place the engines under- 
neath the aircraft in such a way that their jets intercept as much of the signature 
as possible. Then with the jet Mach number M j  + 1, and with the jets made as hot 
as possible, say by the use of afterburners, the condition may be reached where 
the signature waves reflect off the top edges of the jets instead of refracting 
through them. Inside the jets, precursor and post-cursor waves will exist, and the 
jets act as a kind of wave guide for these unsteady waves. Of course these waves 
will themselves make disturbances a t  the bottom edges of the jets and this in 
turn will cause waves to be propagated towards the ground. If such a wave 
system were able to  propagate far enough it would eventually organize itself into 

-f In  the finite part of the plane. 
$ In the laboratory frame of reference. Here the velocity oft  relative to the gas increases 

without limit because etre,, = v,,/sin q, and ut + 0. 
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a somewhat unsteady N wave. The ultimate effect of the impedance mismatch 
is then to cause the aircraft to appear longer in the far field, so the overpressure is 
reduced by forcing the signature to be more spread out. I@-k ctI = t 3 Fl = F2 = r  

- i  ui 

011 

7f a1 

@8 (a1,aJ 

0 CE1,EJ (4 7%- a1 

FIGURE 5. Regular refraction at a gas interface. Sequence of events leading to Mot = co 
type of rigid limit. (a) Regular refraction; (b )  growth of polar for second medium; (c) rigid 
limit, Mot = B,, = co, ut = 8, = 0. 

Shock impedance for irregular refraction 
The hodograph diagram indicates that  there are basically four types of irregular 

refraction, figure 6. Two of these are of the slow-fast variety ad < a,, figure 6 (a) ,  
( b ) ,  and the other two are of the reciprocal variety ai > a,, figure S(c), (d). For 
the moment we note that for each variety the reflected wave is a shock for one 
system, figure 6(a ) ,  ( c ) ,  and an expansion? for the other figure 6 ( b ) ,  (d ) .  It is 
easy to show that the definition of shock impedance remains adequate when the 
reflected wave is an expansion; for referring to figure 6 ( b ) ,  (d) ,  one has in 

t The transitional condition is clearly ord 8, ord A,. 
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both cases that cot 6, > cot S,, and therefore by expressions (13)) (14) and (15), 
2, > Z,, as it should. Some difficulties are encountered, however, when the re- 
flected wave is a shock. Thus for the refraction shown in figure 6 (a) ,  the wave i 
does not actually reach the interface; the waves j and k do so instead. If the 
impedance of the first medium is determined by j, then in most cases this gives 
cot 8, > cot St and therefore Zj > 2,. This contravenes our basic assumption 
that the impedance should increase when the reflected wave is a shock. The posi- 
tion can be retrieved if one agrees to compare Zi with 2, max, that is with the value 
of 2, for which amp t is a maximum. Now amp t is a maximum at the point B, 
where t is normal to the flow. But the denominator of (15) is zero for a normal 
shock, hencet a t  B, 2, = Z,,, = a, and Z, < Z,,,,. The streamline through B 
could be replaced by a straight wall, and when looked at in this way, it can be 
seen that it is the condition at B which is dominating the impedance of the second 
medium. 

For the refraction shown in figure 6 ( c )  there are two possibilities, either that 
cot S, < cot 8, in which case1 Zi < Z, max, which is consistent with our basic 
assumption, or that cot 8, > cot St so that Zi > Ztmax, which is inconsistent. In  
the latter case the position can be retrieved to a large extent in the following way. 
It is noted that a Guderley patch is present in the flow (Guderley 1947). This 
means that both an expansion and a shock are reflected, and this circumstance 
is not covered by the basic assumption. The assumption is again applicable, how- 
ever, once amp i 2 ord S,, for then at  the equality condition the reflected waves 
become Mach lines and a t  the inequality condition they vanish altogether. 
As a result i and n become part of the same wave, and 2, can be determined by 
the amplitude of the wave a t  A,. This gives cot Si = cot St and 2, = 2,. The basic 
assumption is also applicable up to the point where the irregular refraction point 
forms. As shown elsewhere (Henderson & MacPherson 1968)) it forms by a,,, 
forming a double root, denoted by (a, 3 as), and then becoming unreal, figure 
2 (c ) .  For the regular refraction, the reflected wave is a shock, and by figure 2 ( c ) ,  
cot Si < cot S,, and so 2, < 2, as it should. In  summary, the only place where the 
basic assumption has been found to be applicable is for the small range of initial 
conditions ord (a, = a,) < amp i < ord S,, which appears to be restricted to the 
fast-slow irregular refraction of the type illustrated in figure 6 ( c ) .  This range can 
be considered a transitional situation, from a regular refraction where Z, < 2, 
to an irregular refraction where 2, = 2,. Inside the range, one can write approxi- 
mately 2, N 2,. 

Concluding remarks 
The shock impedance 2, defined by expression (15)) has been subjected to a 

fairly searching study, and it appears to be adequate for any circumstance likely 
t o  arise in practice. It has been shown to be consistent with the acoustic limit, 
with the Polachek & Seeger limit, and it is consistent with the various reflexion 

t But the rigidity of the medium Bi remains finite. 
$ Here Ztmsa occurs at  the interface, and in general t nowhere becomes a normal shock. 
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limits. It serves all the known regular refractions, and all the irregular refrac- 
tions, except perhaps for a small range of initial conditions where a Guderley 
patch is present. Even here though it should serve reasonably well. One can 
therefore assert with reasonable confidence, that a shock will refract whenever it 
encounters a change in 2, and further that the reflected wave will be a shock if 
Z increases and an expansion if it decreases. 

6, 0. si 6 
ord A, < ord S, 

PIP, 1 

FIGURE 6. Basic irregular refractions at a gas interface, (a) slow-fast, Si > 6,; ( b )  slow- 
fast, 6, < 8,; (c )  fast-slow, & > & or 8, < &; ( d )  fast-slow, Si < tYt. 
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